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Abstract. The transfer function describing a power converter is a fundamental tool throughout 

the design and control of converters in closed loop, as seen in the voltage and average current 

control techniques. Therefore, this paper aims at presenting the small signal averaged space-state 

modeling of a DC-DC SEPIC-Zeta converter in continuous conduction mode. The resulting model 

can provide responses on par with precise computer simulations, making it possible to be used 

for designing controllers. A mathematical analysis is shown, upon which it is possible to obtain 

simulation results that validate the theoretical assumptions. .  
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1. Introduction 
DC-DC converters play a crucial role in adapting 
voltage and current levels directly between source 
and load, without the need of inversion and 
rectification through cascated converters [2].  
Although being able to raise and decrease voltage 
levels using transformers, DC-DC converters show 
their potential when those are not being used. By 
using switching frequencies in the range of kHz, 
magnetics components become much smaller than in 
60 Hz, resulting in a higher power density [3], 
efficiency, and smaller volume.  

The small signal modeling will be done using the 
averaged space-state modeling technique proposed 
by Middlebrook and Ćuk in [6]. Although this 
technique requires a considerable amount of 
symbolic mathematical analysis, specially because 
the converter generates an eighth order sistem, the 
technique is a widely known and accepted across 
power electronics literature, justifying its use in this 
paper. 

2. Methodology 
A great number of converter modeling techniques 
are presented in literature. Current injection 
modeling consists in analysing the current 
contribution from each non-linear stages to the 
linear one, applying disturbances and determining 
the contribution of each non-linear stage in the 
output voltage [6]. In the averaged circuit method, 
the non-linear part is replaced by an model 

describing the averaged values, simulating its 
behaviour in low frequencies. In this model, the 
averaged voltages and currents through the 
terminals are identical to the original circuit [7]. A 
method very much known and cemented in literature 
is the averaged space-state model, which consists in 
modeling the system in its state-space throught the 
voltages and current derivatives in the capacitors 
and inductors, respectively. 

Henceforth, disturbances are applied in the duty 
cycle, input voltage, output voltage, and in the state 
vector, resulting in a non-linear equation that must 
be linearized around the averaged values [4].  

2.1 The SEPIC-Zeta converter 

The SEPIC-Zeta converter was introduced in [5], 
being a cascated connetion between a SEPIC 
converter and a Zeta converter, using a technique 
presented in [1], called graft-scheme, that allows the 
designer to reduce the number of switches by 
replacing them with diodes, as long as they share a 
common node. The converter qualitative and 
quantitative analysis was throughly made in [5]. The 
circuit is shown in Fig. 1. 

 



 

 

Fig. 1. SEPIC-Zeta converter in CCM. (a) First stage 
and (b) second stage. 

2.2 Space-states 

The space-state description is the standard form to 
describe differential equations that describe a 
system. Starting with a linear system, the derivatives 
of the state variables are expressed as linear 
combinations of the independent inputs of the 
system and of its own state variables. The state 
variables are usually associated to energy storage 
elements, and for a typical converter, the variables 
represent the currents in the inductors and voltages 
in the capacitors [8].  

In any given point in time, the values of the state 
variables are depedent of past values, instead of the 
present values in the system inputs. To solve the 
differential equations, the initial values of the state 
variables must be specified. Therefore, if a state of 
the system is known, that is, the values of all the state 
variables any given time to, as well as the inputs, we 
may solve the state equations of the system to find 
the waveforms regarding any future time [8].  

The state equations can be written in matrix form as 
the linear system (1.1).  

 { 
ẋ = Ax(t) + Bu(t)

ẏ = Cx(t) + Du(t)
  (1.1) 

   

The state vector x(t) contain all the state variables, 
mainly the inductor’s currents and capacitor’s 
voltages. The input vector u(t) is composed of all the 
independent inputs of the system, with the input 
voltage v(t) being an example. 

Middlebrook and Ćuk derived the averaged space-
state equation in their famous paper in 1976 [4]. The 
equation, which represents the amout of disturbance 
in the output voltage due to a disturbance in the duty 

cycle is shown in (1.2).  
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 (1.2) 

The matrices A, A1, A2, are composed of constants 
related to the capacitances, impedances and 
resistances of the circuit. B, B1 and B2 represent the 

influence of the inputs on the derivatives of the state 
variables. The y(t) vector is called the output vector. 
It is normally composed just of the x(t) vector, that 
together with the C, C1 and C2  matrices will express 
the output as a linear combination of the input 
variables. The D matrix represents a direct 
connection between the input and the output, which 
is something that will not be adressed here. The X 
vector is composed of the averaged values of the 
state variables. In the present case, it will be 
composed of equations derived in [5]. 

2.3 SEPIC-Zeta space-state equations 

By describing the system in its standard form shown 
in equation (1.1), the idea of expressing the voltages 
on the inductors and current in the capacitors 
becomes clear.  Starting at the first stage, from t = 0 
to t = DTs with D being the duty cycle, and Ts the total 
period of the first and second stages. 

By analysing the system in Fig. 1. (a) using Kirchoff’s 
laws, we arrive at the linear system presented in 
(1.3).    

 

 (1.3) 

Solving the linear system yields 8 equations that 
express the derivatives of the currents on the 
inductors and the voltages on the capacitors. The 
matrix form of the system, in accordance with (1.2) 
is shown in (1.4) and (1.5). 
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 (1.5) 

Following the same steps, we repeat the process for 
the second stage, Fig. 1. (b). 

 

 

  (1.6) 

Again, solving the linear system yields 8 equations 
that express the derivatives of the currents on the 
inductors and the voltages on the capacitors. The 
matrix form of the system, in accordance with (1.2) 
is shown in (1.7) and (1.8). 
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The matrices B1 and B2 are the same because the 
input is solely the voltage source, that suffers no 
change during the stages. 

The vector X is shown in (1.9). 

 

 (1.9) 

Calculating A and B, as defined in [6], yields (1.10) 
and (1.11). 
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The C will be composed of just the variable we want 
as output, from the X vector. It is shown in (1.12) 

 

  (1.12) 

The I matrix is the indentity matrix with size equal to 
the matrix A, being 8 x 8. 

With all matrices calculated, we apply (1.2) using 
MATLAB to find the transfer function of the 
converter. Defining TP(s) as the transfer function, in 
(1.13). 

 

  (1.13) 

With N(s) and D(s) representing the numerator and 
denominator of the transfer function. They are 
shown in (1.14) and (1.15). 
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With additional values (1.16). 

 

  (1.16) 

 

3. Power stage design 
This section will be dedicated to comparing the 
responses of the equation acquired by the averaged 
space-state modeling with the simulation, aiming at 
validating the theoretical analysis. By substituting 
the component values calculated in this section in 
(1.13), we will acquire a polynomial that will 



 

describe the converter behaviour. 

Tab. 1 shows the project parameters for the power 
stage. 

Parameter Value 

Input Voltage Vi =12 V 

Output voltage VO =127 V 

Duty Cycle D = 0.7648 

Load resistance RO = 161.29 Ω 

Output power PO = 100 W 

Switching Frequency fs = 30 kHz 

Peak-to-Peak current 
ripple on inductors  

∆IL1 =10% IL1 (md.) 

 ∆IL2 = 20% IL1 (md.) 

 ∆IL3 = 20% IL1 (md.)  

∆IL4 = 20% IL1 (md.) 

Peak-to-Peak voltage 
ripple on inductors 

∆VC1 = 5% VC1 

 ∆VC2 = 5% VC2 

∆VC3 = 5% VC3 

 ∆VC4 = 1% VO 

 

By using the equations derived on [5], we calculate 
the components needed for the converter’s power 
stage. They are presented in (1.17) to (1.25). 
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3.1 Determining the transfer function 
Vo(s)/d(s) 

 

After determining the component values of the 
power stage, we solve equation (1.13) to find the 
polynomials. The numerical TP(s) is shown in (1.26). 

 

  (1.26) 

3.2 Circuit Simulation 

With equation (1.26) at hand, a disturbance signal 
will be applied with small variations, and added to 
the median output voltage. That way, when both 
waveforms are superimposed (converter simulation 
and transfer funtion, both time responses) it will 
become evident that the equation response it the 
median value of the converter response. 

PSIM will be used for the circuit and transfer function 
simulations. The circuits diagram is shown in Fig. 2. 



 

 

Fig. 2. Simulated circuits on PSIM. From top to 
bottom: Power circuit, PWM generator and Transfer 
function simulator. 

The system described by Fig. 2 simulates the real 
behaviour of the circuit, in continous conduction 
mode, without losses. The duty cycle will be 
disturbed by +0.005 V , -0.01 V and +0.01 V in 30 ms, 
55 ms and 80 ms, both in the PWM generator and the 
H(s) block. 

4. Results 
Fig. 3 shows the two waveforms, superimposed. 

 

Fig. 3. Output voltage response obtained by the 
averaged model and by the converter faced with 
small disturbances applied to the duty cycle. 

The first graph shows the converter response in red, 
and the model response in blue. We can clearly 
observe that the transfer function illustrates the 
median value of the converter response, validating 
the model. 

The second graph shows the disturbance applied to 
the duty cycle. 

5. Conclusion 
This paper presented the small signal modeling for 
the SEPIC-Zeta converter, operating in continuous 
conduction mode. Starting with an mathematical 
approach, the averaged space-state equations were 
derived. Although complex, with long equation and 

the need of symbolic computation in third party 
softwares, it is verified that the techinique yields the 
correct transfer function of the aforementioned 
converter, faced with disturbances. 

Verifying the results, we can confirm that the 
technique proposed by Middlebrook and Ćuk in 1976 
[4] is adequate to represent the SEPIC-Zeta converter 
as a voltage lifter, in continuous conduction mode.  
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